Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Nat Aging ; 2(1): 19-30, 2022 01.
Article in English | MEDLINE | ID: covidwho-2319893

ABSTRACT

Length and quality of life are important to us all, yet identification of promising drug targets for human aging using genetics has had limited success. In the present study, we combine six European-ancestry genome-wide association studies of human aging traits-healthspan, father and mother lifespan, exceptional longevity, frailty index and self-rated health-in a principal component framework that maximizes their shared genetic architecture. The first principal component (aging-GIP1) captures both length of life and indices of mental and physical wellbeing. We identify 27 genomic regions associated with aging-GIP1, and provide additional, independent evidence for an effect on human aging for loci near HTT and MAML3 using a study of Finnish and Japanese survival. Using proteome-wide, two-sample, Mendelian randomization and colocalization, we provide robust evidence for a detrimental effect of blood levels of apolipoprotein(a) and vascular cell adhesion molecule 1 on aging-GIP1. Together, our results demonstrate that combining multiple aging traits using genetic principal components enhances the power to detect biological targets for human aging.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Female , Humans , Genome-Wide Association Study/methods , Quality of Life , Aging/genetics , Phenotype
2.
Sci Rep ; 12(1): 20167, 2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-2133629

ABSTRACT

To create a scientific resource of expression quantitative trail loci (eQTL), we conducted a genome-wide association study (GWAS) using genotypes obtained from whole genome sequencing (WGS) of DNA and gene expression levels from RNA sequencing (RNA-seq) of whole blood in 2622 participants in Framingham Heart Study. We identified 6,778,286 cis-eQTL variant-gene transcript (eGene) pairs at p < 5 × 10-8 (2,855,111 unique cis-eQTL variants and 15,982 unique eGenes) and 1,469,754 trans-eQTL variant-eGene pairs at p < 1e-12 (526,056 unique trans-eQTL variants and 7233 unique eGenes). In addition, 442,379 cis-eQTL variants were associated with expression of 1518 long non-protein coding RNAs (lncRNAs). Gene Ontology (GO) analyses revealed that the top GO terms for cis-eGenes are enriched for immune functions (FDR < 0.05). The cis-eQTL variants are enriched for SNPs reported to be associated with 815 traits in prior GWAS, including cardiovascular disease risk factors. As proof of concept, we used this eQTL resource in conjunction with genetic variants from public GWAS databases in causal inference testing (e.g., COVID-19 severity). After Bonferroni correction, Mendelian randomization analyses identified putative causal associations of 60 eGenes with systolic blood pressure, 13 genes with coronary artery disease, and seven genes with COVID-19 severity. This study created a comprehensive eQTL resource via BioData Catalyst that will be made available to the scientific community. This will advance understanding of the genetic architecture of gene expression underlying a wide range of diseases.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Quantitative Trait Loci , Humans , DNA , Gene Expression , Quantitative Trait Loci/genetics , Sequence Analysis, RNA
3.
Sci Rep ; 12(1): 19564, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2119334

ABSTRACT

DNA methylation commonly occurs at cytosine-phosphate-guanine sites (CpGs) that can serve as biomarkers for many diseases. We analyzed whole genome sequencing data to identify DNA methylation quantitative trait loci (mQTLs) in 4126 Framingham Heart Study participants. Our mQTL mapping identified 94,362,817 cis-mQTLvariant-CpG pairs (for 210,156 unique autosomal CpGs) at P < 1e-7 and 33,572,145 trans-mQTL variant-CpG pairs (for 213,606 unique autosomal CpGs) at P < 1e-14. Using cis-mQTL variants for 1258 CpGs associated with seven cardiovascular disease (CVD) risk factors, we found 104 unique CpGs that colocalized with at least one CVD trait. For example, cg11554650 (PPP1R18) colocalized with type 2 diabetes, and was driven by a single nucleotide polymorphism (rs2516396). We performed Mendelian randomization (MR) analysis and demonstrated 58 putatively causal relations of CVD risk factor-associated CpGs to one or more risk factors (e.g., cg05337441 [APOB] with LDL; MR P = 1.2e-99, and 17 causal associations with coronary artery disease (e.g. cg08129017 [SREBF1] with coronary artery disease; MR P = 5e-13). We also showed that three CpGs, e.g., cg14893161 (PM20D1), are putatively causally associated with COVID-19 severity. To assist in future analyses of the role of DNA methylation in disease pathogenesis, we have posted a comprehensive summary data set in the National Heart, Lung, and Blood Institute's BioData Catalyst.


Subject(s)
COVID-19 , Coronary Artery Disease , Diabetes Mellitus, Type 2 , Humans , DNA Methylation , Diabetes Mellitus, Type 2/genetics , Coronary Artery Disease/genetics , Quantitative Trait Loci , Polymorphism, Single Nucleotide , Cytosine , CpG Islands/genetics , Genome-Wide Association Study
4.
EBioMedicine ; 78: 103978, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1768041

ABSTRACT

BACKGROUND: Severe COVID-19 T-cell lymphopenia is more common among older adults and entails poor prognosis. Offsetting the decline in T-cell count during COVID-19 demands fast and massive T-cell clonal expansion, which is telomere length (TL)-dependent. METHODS: We developed a model of TL-dependent T-cell clonal expansion capacity with age and virtually examined the relation of T-cell clonal expansion with COVID-19 mortality in the general population. FINDINGS: The model shows that an individual with average hematopoietic cell TL (HCTL) at age twenty years maintains maximal T-cell clonal expansion capacity until the 6th decade of life when this capacity rapidly declines by more than 90% over the next ten years. The collapse in the T-cell clonal expansion capacity coincides with the steep increase in COVID-19 mortality with age. INTERPRETATION: Short HCTL might increase vulnerability of many older adults, and some younger individuals with inherently short HCTL, to COVID-19 T-cell lymphopenia and severe disease. FUNDING: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.


Subject(s)
COVID-19 , Lymphopenia , Adult , Aged , Aging , Humans , T-Lymphocytes , Telomere/genetics , Young Adult
5.
Journal of Financial Stability ; : 100986, 2022.
Article in English | ScienceDirect | ID: covidwho-1693284

ABSTRACT

We study the economics- and finance-scholars’ reaction to the 2008 financial crisis using machine learning language analyses methods of Latent Dirichlet Allocation and dynamic topic modelling algorithms, to analyze the texts of 14,270 NBER working papers covering the 1999–2016 period. We find that academic scholars as a group were insufficiently engaged in crises’ studies before 2008. As the crisis unraveled, however, they switched their focus to studying the crisis, its causes, and consequences. Thus, the scholars were “slow-to-see,” but they were “fast-to-act.” Their initial response to the ongoing Covid-19 crisis is consistent with these conclusions.

6.
Otol Neurotol ; 42(8): e1072-e1076, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1303972

ABSTRACT

IMPORTANCE: An infective etiology of acute peripheral vestibulopathy (APV) has long been hypothesized. In the context of coronavirus disease 2019 (COVID-19), we examined the possible comorbidity between these two entities. OBJECTIVES: APV is the second most common cause of vestibular disorders and results from a sudden and unilateral loss of vestibular inputs. The characteristic signs and symptoms include sudden and prolonged vertigo, absence of auditory symptoms, and absence of other neurological symptoms. An infective etiology of APV has long been hypothesized on the basis of its association with respiratory tract infections and its frequent occurrence in epidemics. Possible comorbidity with herpes simplex virus type 1 reactivation or influenza virus infection has also been proposed. This study was designed to assess the possible comorbidity between APV and COVID-19. DESIGN/SETTING/PARTICIPANTS: Quantification of the number of hospital admissions for APV over the period from February to May 2020 was carried out in 5 French hospitals. A comparison with 2018 and 2019 entries over the same period was made. Comorbidity between APV and COVID-19 infection was investigated. RESULTS: No significant increase in admission for APV was noticed over the examination period. No significant difference was noticed among hospitals located in COVID-19 high- and low-risk zones for SARS-CoV-2. No significant increase in the severity of the APV cases was noticed. No case of comorbidity between APV and SARS-CoV-2 infection was reported. Based on our observations, no correlation was made between APV and COVID-19. CONCLUSION: Based on our observations, COVID-19 is not statistically correlated with APV.


Subject(s)
COVID-19 , Vestibular Neuronitis , Comorbidity , Hospitalization , Humans , SARS-CoV-2
7.
J Gerontol A Biol Sci Med Sci ; 76(8): e97-e101, 2021 07 13.
Article in English | MEDLINE | ID: covidwho-1060193

ABSTRACT

Profound T-cell lymphopenia is the hallmark of severe coronavirus disease 2019 (COVID-19). T-cell proliferation is telomere length (TL) dependent and telomeres shorten with age. Older COVID-19 patients, we hypothesize, are, therefore, at a higher risk of having TL-dependent lymphopenia. We measured TL by the novel Telomere Shortest Length Assay (TeSLA), and by Southern blotting (SB) of the terminal restriction fragments in peripheral blood mononuclear cells of 17 COVID-19 and 21 non-COVID-19 patients, aged 87 ± 8 (mean ± SD) and 87 ± 9 years, respectively. TeSLA tallies and measures single telomeres, including short telomeres undetected by SB. Such telomeres are relevant to TL-mediated biological processes, including cell viability and senescence. TeSLA yields 2 key metrics: the proportions of telomeres with different lengths (expressed in %) and their mean (TeSLA mTL), (expressed in kb). Lymphocyte count (109/L) was 0.91 ± 0.42 in COVID-19 patients and 1.50 ± 0.50 in non-COVID-19 patients (p < .001). In COVID-19 patients, but not in non-COVID-19 patients, lymphocyte count was inversely correlated with the proportion of telomeres shorter than 2 kb (p = .005) and positively correlated with TeSLA mTL (p = .03). Lymphocyte count was not significantly correlated with SB mTL in either COVID-19 or non-COVID-19 patients. We propose that compromised TL-dependent T-cell proliferative response, driven by short telomere in the TL distribution, contributes to COVID-19 lymphopenia among old adults. We infer that infection with SARS-CoV-2 uncovers the limits of the TL reserves of older persons. Clinical Trials Registration Number: NCT04325646.


Subject(s)
COVID-19/physiopathology , Hospitalization , Lymphocyte Count , Lymphopenia , Telomere Shortening/physiology , Aged, 80 and over , Cellular Senescence , Humans , Lymphopenia/etiology , Lymphopenia/pathology , SARS-CoV-2/pathogenicity , T-Lymphocytes/immunology
8.
medRxiv ; 2020 Oct 04.
Article in English | MEDLINE | ID: covidwho-835254

ABSTRACT

BACKGROUND: Lymphopenia due to a plummeting T-cell count is a major feature of severe COVID-19. T-cell proliferation is telomere length (TL)-dependent and TL shortens with age. Older persons are disproportionally affected by severe COVID-19, and we hypothesized that those with short TL have less capacity to mount an adequate T-cell proliferative response to SARS-CoV-2. This hypothesis predicts that among older patients with COVID-19, shorter telomeres of peripheral blood mononuclear cells (PBMCs) will be associated with a lower lymphocyte count. METHODS: Our sample comprised 17 COVID-19 and 21 non-COVID-19 patients, aged 87(8) (mean(SD)) and 87 (9) years, respectively. We measured TL by the Telomere Shortest Length Assay, a novel method that measures and tallies the short telomeres directly relevant to telomere-mediated biological processes. The primary analysis quantified TL as the proportion of telomeres shorter than 2 kilobases. For comparison, we also quantified TL by Southern blotting, which measures the mean length of telomeres. RESULTS: Lymphocyte count (109/L) was 0.91 (0.42) in COVID-19 patients and 1.50(0.50) in non-COVID-19 patients (P < 0.001). In COVID-19 patients, but not in non-COVID-19 patients, lymphocyte count was inversely correlated with the proportion of telomeres shorter than 2 kilobases (P = 0.005) and positively correlated with the mean of telomeres measured by TeSLA (P = 0.03). Lymphocyte counts showed no statistically significant correlations with Southern blotting results in COVID-19 or non-COVID-19 patients. CONCLUSIONS: These results support the hypothesis that a compromised TL-dependent T-cell proliferative response contributes to lymphopenia and the resulting disproportionate severity of COVID-19 among old adults. We infer that infection with SARS-CoV-2 uncovers the limits of the TL reserves of older persons.

SELECTION OF CITATIONS
SEARCH DETAIL